The Why & How of X-Ray Timing

Z. Arzoumanian
(USRA/NASA-GSFC)
with thanks to C. Markwardt

•Why should I be interested?

•What are the tools?

•What should I do?

Typical Sources of X-Ray Variability

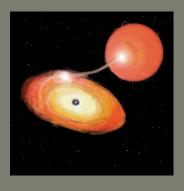
- Isolated pulsars (ms–10 s)
- X-ray binary systems
 - Accreting pulsars (ms–10s s)
 - Eclipses (10s min–days)
 - Accretion disks (~ms-years)
- Flaring stars & X-ray bursts

- Probably *not* supernova remnants, clusters, or the ISM
- But there could be variable serendipitous sources in the field, especially in *Chandra* and *XMM* observations

In short, stellar-sized objects (& super-massive black holes?)

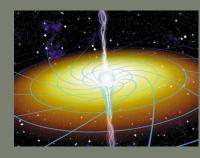
Why should I be interested?

- Rotation of stellar bodies
 - pulsation period
 - stability of rotation

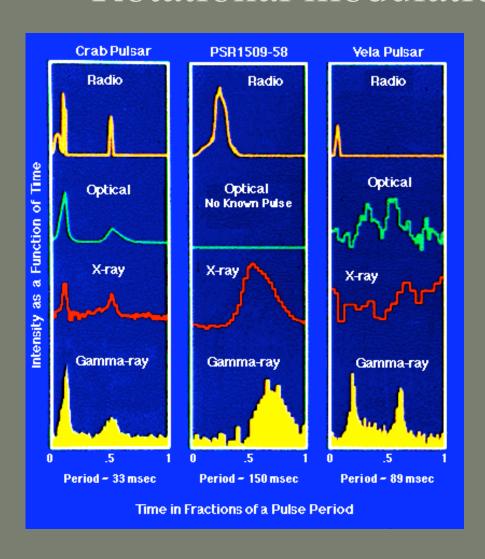


- Binary orbits
 - orbital period
 - sizes of emission regions and occulting objects
 - orbital evolution

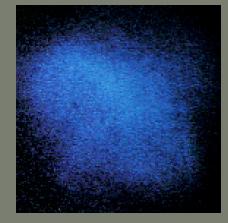
- Accretion phenomena
 - broadband variability
 - "quasiperiodic" oscillations (QPOs)
 - bursts & "superbursts"



Rotational modulation: Pulsars

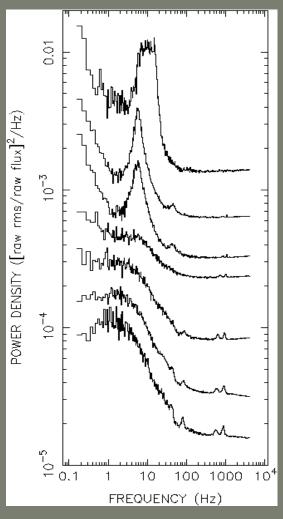


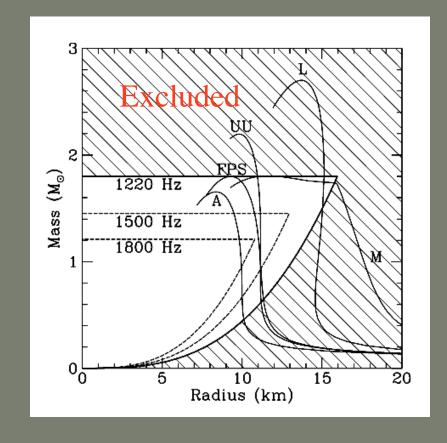
Crab pulsar



Accretion Science: QPOs from Neutron Star Binaries

Sco X-1



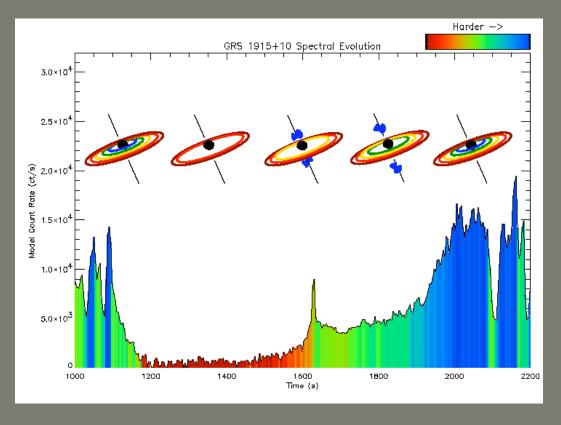


kHz QPO maximum frequency constrains NS equations of state

Questions that timing analysis should address

- Does the X-ray intensity vary with time?
- On what timescales?
 - Periodic or aperiodic?What frequency?
 - How coherent? (Q-value)
- Amplitude of variability
 - (Fractional) RMS?
- Any variation with time of these parameters?

• Any correlated changes in spectral properties or emissions at other wavelengths?

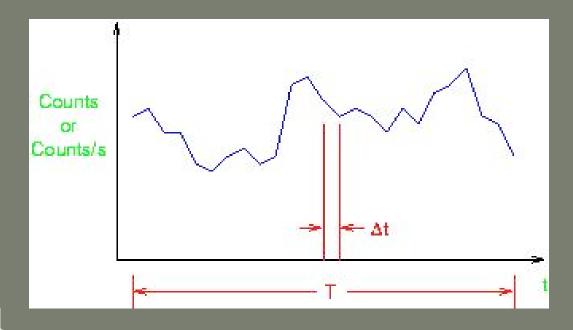


Basics

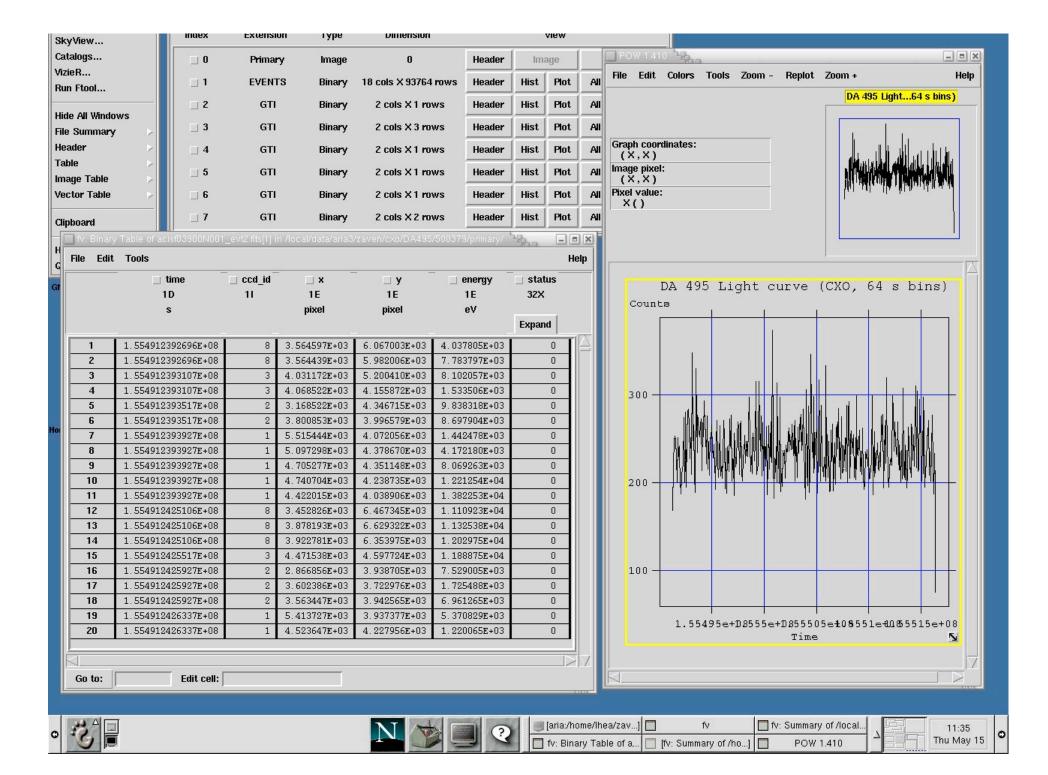
A light curve (for each source in the FOV) is a good first step

- Sampling interval Δt and frequency $f_{samp} = 1/\Delta t$
- Nyquist frequency, $f_{Nyq} = \frac{1}{2} f_{samp},$

is the highest signal frequency that can be accurately recovered



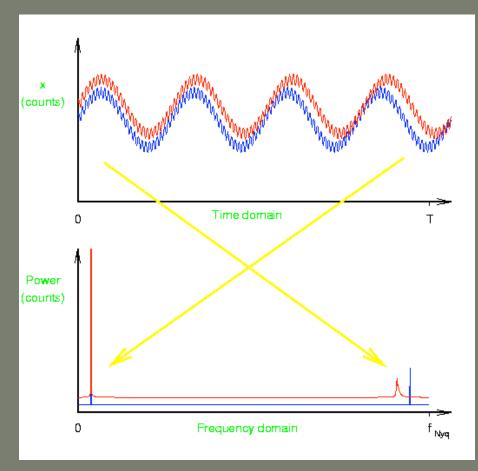
• Basic variability measure, variance: $\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2$ $\sigma = \text{Root Mean Square}$



Fourier Analysis

Answers the question: how is the variability of a source distributed in frequency?

- Long-timescale variations appear in low-frequency spectral bins, short-timescale variations in high-frequency bins
- If time-domain signal varies with non-constant frequency, spectral response is smeared over several bins

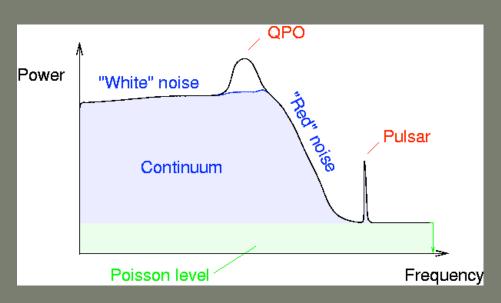


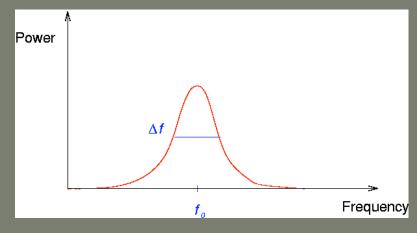
What is a QPO?

A quasiperiodic oscillation is a "sloppy" oscillation—can be due to:

- intrinsic frequency variations
- finite lifetime
- amplitude modulation

Q-value = $f_o / \Delta f$





Fourier Transform & FFT

• Given a light curve {x} with N samples, Fourier coefficients are:

$$a_j = \sum_k x_k \exp(2\pi i j k/N),$$

 $[j = -N/2, ..., 0, N/2 - 1],$

usually computed with a
Fast Fourier Transform
(FFT) algorithm, e.g., with
the powspec tool.

• Power density spectrum (PDS):

$$P_j = \frac{2}{N_{\text{ph}}} |a_j|^2$$
[Leahy normalization]

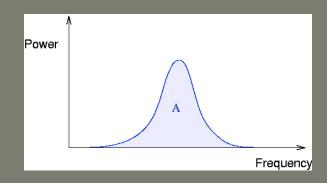
Use *Pj/*_{<CR>} (fractional RMS normalization) to plot (rms/_{mean})² Hz⁻¹, often displayed and rebinned in a log-log plot.

Estimating Variability from observations

• Find "area" A under curve in power spectrum,

$$A = \int P \, dv \approx \sum_{j} P_{j} \, \Delta v,$$

where P_j are the PDS values, and $\Delta v = \frac{1}{T}$ is the Nyquist spacing.



• Fractional RMS is $r = \sqrt{\frac{A}{A}}$

• For coherent pulsations,

$$f_p = \sqrt{\frac{2(P-2)}{\text{CR}}}$$

is the *pulsed fraction*, i.e., (peak–mean)/mean

Estimating Variability for Proposals

To estimate amplitude of variations, or exposure time, for a desired significance level...

• Broadband noise:

$$r^2 = \frac{2n\sigma\sqrt{\Delta v}}{\sqrt{T}}$$

where

r —RMS fraction

n_o—number of "sigma" of statistical significance demanded

 Δv — frequency bandwidth (e.g., width of QPO)

I—count rate

T —exposure time

• Coherent pulsations:

$$f_p = \frac{4 \, n_{\sigma}}{I \, T}$$

• Example:

X-ray binary, 0–10 Hz, 3σ detection, 5 ct/s source, 10 ks exposure

≈ 3.8% threshold RMS

Power Spectrum Statistics

- Any form of noise will contribute to the PDS, including Poisson (counting) noise
- Distributed as χ² with 2
 degrees of freedom (d.o.f.)
 for the Leahy normalization

- Good—Hypothesis testing used in, e.g., spectroscopy also works for a PDS
- Bad mean value is 2,
 variance is 4!
 ⇒ Typical noise measurement is 2±2
- Adding more lightcurve points won't help: makes more finely spaced frequencies

Statistics: Solutions

- Average adjacent frequency bins
- Divide up data into segments, make power spectra, average them (essentially the same thing)
- Averaging M bins together results in noise distributed as χ²/M with 2M d.o.f.

 ⇒ for hypothesis testing, still chi-squared, but with more d.o.f.
- However, in detecting a source, you examine many Fourier bins, perhaps all of them. Thus, the significance must be reduced by the number of trials. Confidence is

 $C = 1 - N_{\text{bins}} \times \text{Prob}(MP_j, 2M),$ where N_{bins} is the number of PDS bins (i.e., trials), and $\text{Prob}(\chi^2, \mathbf{v})$ is the hypothesis test.

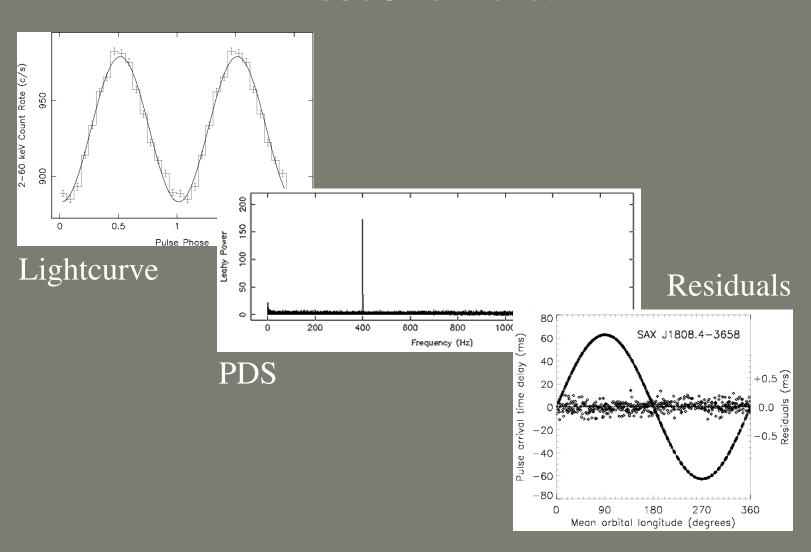
Tips

- Pulsar (coherent pulsation) searches are most sensitive when *no rebinning* is done
- QPO searches need to be done with *multiple rebinning* scales
- Beware of signals introduced by
 - instrument, e.g., CCD read time
 - dead time
 - orbit of spacecraft
 - rotation period of Earth (and harmonics)

What To Do

- Step 1. Create light curves for each source in your field of view ⇒ inspect for features, e.g., eclipses. Usually, this is enough to know whether to proceed with more detailed analysis, but *you can't always see variability by eye!*
- Step 2. Power spectrum. Run powspec or equivalent and search for peaks. A good starting point, e.g., for RXTE, is to use FFT lengths of ~ 500 s.

SAX J1808: The First Accreting Millisecond Pulsar



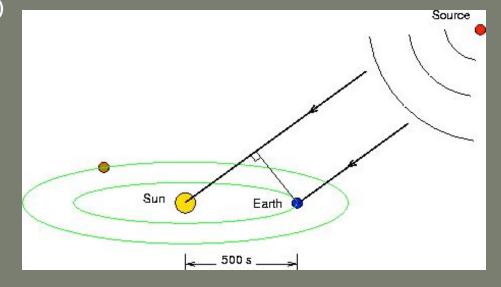
Step 3. Pulsar or eclipses found?

Refine timing analysis to boost signal-to-noise.

• Barycenter the data: corrects to arrival times at solar system's center of mass

(tools: fxbary/axbary)

- Refined timing
 - Epoch folding (efold)
 - Rayleigh statistic (Z^2)
 - Arrival time analysis(Princeton TEMPO?)



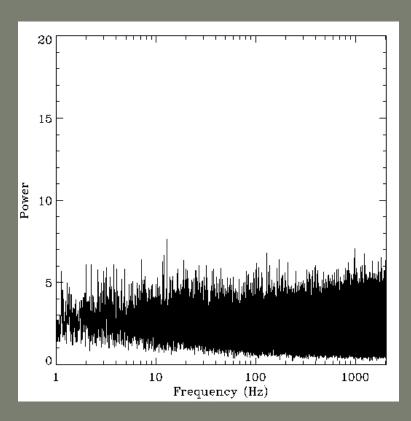
• Hint: best to do timing analysis (e.g., epoch folding especially) on segments of data if they span a long time baseline, rather than all at once.

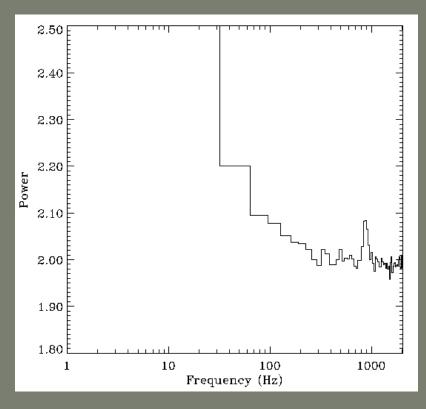
Step 3. Broadband feature(s) found?

Refined analysis best done interactively (IDL? MatLab?).

- Plot PDS
- Use χ^2 hypothesis testing to derive significance of features
- Rebin PDS as necessary to optimize significance
- If detected with good significance, fit to simple-tointegrate model(s), e.g., gaussian or broken power-law
- Compute RMS

Rebinning to find a QPO: 4U1728–34





• To detect a weak QPO buried in a noisy spectrum, finding the right frequency resolution is essential!

Suggested Reading

- van der Klis, M. 1989,
 Fourier Techniques in X-ray Timing, in <u>Timing</u>
 <u>Neutron Stars</u>, NATO ASI
 282, Ögelman & van den
 Heuvel eds., Kluwer
- Press et al., *Numerical Recipes*
 - power spectrum basics
 - Lomb-Scargle periodogram

- Leahy et al. 1983, ApJ 266, 160
 - FFTs; power spectra;statistics; pulsars
- Leahy et al. 1983, ApJ 272, 256
 - epoch folding; Z^2
- Vaughan et al. 1994, ApJ 435, 362
 - noise statistics